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The upper bounds to acceleration and angular velocity which are suggested by 
quantum gravitational effects are described, together with the relativistic bound 
to velocity, by means of a cone J-+ in the Lie algebra of the Poincar6 group. 
The connection between these bounds and the existence of a minimal measurable 
length (of the order of Planck's length) is illustrated by means of a simple model. 
The geometric properties of the cone if+ and of other related structures are 
examined in some detail. The new geometric background requires some 
modifications of the concepts of causal influence and of spacetime coincidence, 
which are analyzed and shown to lead to some nonlocal features of the theory. 
Due to the smallness of Planck's length, these modifications to the causal relations 
cannot be observed by means of available experimental methods, but they could 
have some influence on the structure of elementary particles and on the very 
early cosmology. 

1. I N T R O D U C T I O N  

It has been  suggested by Caianie l lo  (1981), Caianie l lo  et aL (1982), 
and  Toi ler  (1977, 1981) that  the geometr ic  b a c k g r o u n d  of  a physical  theory 
shou ld  take in to  account ,  besides the relativistic uppe r  l imit  c to the velocity, 
also an  uppe r  b o u n d  to the accelerat ion of mater ia l  bodies.  More  recently 
Brand t  (1983, 1987) f o u n d  that  an  uppe r  b o u n d  of  the order  of  C21p t , where 

Iv is the P lanck  length,  is expected as a consequence  of q u a n t u m  gravi ta t ional  
effects. We shall  see that  there is a connec t ion  be tween  the uppe r  b o u n d s  
to accelera t ion  and  to angu la r  velocity and  a l imit  of  the order  of  lp to the 

ex tens ion  of  physical  objects or to the accuracy of  pos i t ion  measurements ,  
which also is a q u a n t u m  gravi ta t ional  effect, as shown by Ferretti  (1984). 

In  the present  pape r  we develop the geometr ic  aspects of  a formal i sm 
proposed  by  Toi ler  (1981), in  which the uppe r  b o u n d s  to velocity, angu la r  
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964 Toiler 

velocity, and acceleration are described by a convex cone if+ in the Lie 
algebra 3- of  the Poincar6 group ~. We introduce in this Lie algebra a basis 
composed  of  the generators A k  of  the spacetime translations and the 
generators Ars = -Asr  of  the homogeneous Lorentz transformations.  A gen- 
etic element B ~ 3- can be written in the form 

B = bkAk+�89 = b " A ~  (1.1) 

where a stands for k or for rs. We use also the vector notation 

b = (b 1, b 2, b3), b ' =  (b 23, b 31, b12), b " =  (b 1~ b 2~ b 3~ (1.2) 

We indicate by 5 e the 10-dimensional space of  the pseudo-or thonormal  
coordinate frames in Minkowski space. The Poincar6 group ~ acts transi- 
tively on 5 D and if we choose an element So e 5e, the mapping  g--)gso is a 
diffeomorphism of  ~ and 5e. We consider A k  and A~s as right invariant 
vector fields on ~ ;  they define vector fields on 5 e, which we indicate by the 
same symbols,  and which do not depend on the choice of  So. Note that  
all the tangent spaces of  ~ and of  5e can be identified with 3-: in fact, 
an infinitesimal displacement of  a point in 9 ~ can be considered as an 
infinitesimal Poincar6 t ransformation of  a coordinate frame in Minkowski 
space, described by an element of  the form (1.1) o f  the Lie algebra ~. I f  
we Consider a smooth line h ~ s ( h )  e 6e parametr ized by the variable h and 
we put 

ds(h___~) = bkAk  + lb  r~A~ s (1.3) 
d;t 

then we find that the quantities 

b b' b" 
v = b~, oo = b~, a = - ~  (1.4) 

are, respectively, the components  of  the velocity, the angular velocity, and 
the acceleration of  the moving frame s(A) measured with respect to the 
frame s(A) itself. A convex cone 3-+c  3- describes a limitation on these 
three quantities. 

For instance, we can consider a rigid body which defines a moving 
coordinate frame s (h)  in which it is at rest. This frame follows a trajectory 
in 6 e which describes the motion of  the body,  as discussed, for instance, 
by Hanson and Regge (1974). Since we are dealing with rest frames, we 
have v = 0. It has been shown by Toiler (1977, 1978, 1981) that infinitesimal 
t ransformations with v # 0 become relevant when one studies the feasibility 
of  the construction of  a new reference f rame starting from a preexistent 
one. Reference frames are defined by material objects and are built by 
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means of  physical operations which are feasible only if the Poincar6 trans- 
formation which connects the two frames has certain properties. The 
infinitesimal feasible transformations are described by elements of  the Lie 
algebra belonging to ~-+. In the presence of a gravitational field, the space 
5e of  the local inertial frames (tetrads) is the bundle of the pseudo-orthogonal 
frames of  a pseudo-Riemannian spacetime M and the vector fields Ak have 
to be interpreted as infinitesimal parallel displacements of  the local frames. 

In the next section we discuss a naive model which illustrates the 
connection between the upper  bounds to acceleration and angular velocity 
and the existence of  a minimal extension of material bodies, which is briefly 
discussed in Appendix A. In Section 3 we summarize the main properties 
of  the cone 3 --+ and of  its symmetry group GL(4, R); a simplified proof  of  
the uniqueness of O -+ is given in Appendix B. In Section 4 we discuss the 
concept of  causal influence on the basis of the analysis of SL(4, R) covariant 
free quantum fields given in Toiler (1988). We distinguish between the 
strong causal influence, which is a transitive relation, and the weak causal 
influence, which does not have this property, and we show by means of an 
example that this distinction is very natural in any theory based on extended 
objects. We discuss also the connection between the concepts of  reciprocal 
causal influence and of  spacetime coincidence. 

In Section 5 we give a detailed treatment of  the equations which define 
W ~ and other geometric structures in the space 8-. In Section 6 we apply 
the ideas of  Section 4 to the bundle of  the orthonormal frames of  Minkowski 
spacetime. In Section 7 we summarize the conclusions and we show that, 
as a consequence of  the smallness of  the Planck length, the causal structures 
examined in the present paper  cannot be distinguished from the causal 
structures of  the usual relativistic theories by means of available experi- 
mental methods. 

2. A S IMPLE M O D E L  FOR MAXIMAL ACCELERATION 
AND ANGULAR VELOCITY 

It has been shown by Ferretti (1984) that quantum gravitational effects 
impose a limit 1 of  the order of  Planck's length to the accuracy of  a position 
measurement and it follows that it is not meaningful to consider an object 
confined in a sphere or radius smaller than I. A more direct argument is 
given in Appendix A. It is clear that a spherical rigid body of  radius r 
cannot have an angular velocity larger than el r, otherwise some of its points 
would have a velocity larger than c. A similar reasoning shows that the 
body cannot have an acceleration larger than c2/r. Since we must have r - I, 
we see that quantum gravitational effects give rise to an upper bound to 
the acceleration and the angular velocity of  a material object. 
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In the present section we show that this simple argument, if developed 
with more detail, gives an upper  bound to a particular expression containing 
both the vectors to and a. This argument has a limited validity, because it 
concerns the velocity of  small parts of a body which has already the minimal 
possible extension. However, we shall see in the next section that the same 
inequality follows from general symmetry arguments and the naive treatment 
given here can be useful to help the geometric intuition. 

As mentioned in the preceding section, one can associate with an 
extended body a moving frame s(A) with respect to which it is at rest at 
every time, namely for every value of  the parameter A. The trajectory of  a 
given point of  the extended particle can be parametrized by the variable A 
and it is composed of  points with constant coordinates (0, x) with respect 
to the moving reference frame s(A). The coordinates x 'k of  the point 
corresponding to the value A + dA of the parameter with respect to the 
reference frame s (A) can be obtained by means of  the infinitesimal Poincar6 
transformation 

x 'k = x k + ( b k + b ' k x i )  dA (2.1) 

with b = 0 applied to (0, x), namely they are given by 

x ' ~ 1 7 6  " . x )  dA = ( l + a - x ) b  ~ 
(2.2) 

x ' = x + b ' x x  dA = x + t o x x b  ~ dA 

This point has a velocity smaller than c = 1 if x ' ~  ~  - ]lx'-xll ,  namely if 

II,o • 1 + a .  x (2.3) 

Since this inequality must hold for any value o f x  with Ilxll - I, from a simple 
calculation we obtain the condition 

~o2+ a2+ 211a x ~oll- 1-2 (2.4) 

In the following we use l as the unit of  length, namely we put l = 1. The 
condition (2.4) can also be written in the form 

b ~ -> (b '2 + b "2 + 2 II b' x b"ll) 1/= (2.5) 

3. D E S C R I P T I O N  OF T H E  C O N E  ~'+ 

It has been shown by ToUer (1981) that the cone 5r+c ~ is uniquely 
determined up to the choice of  the unit of  length and of  the time direction 
by the following conditions: 

(A) if+ is a wedge, namely it is convex and invariant under dilatations. 
(B) It is a cone, namely a wedge which does not contain straight lines. 
(C) It has interior points, namely it generates the whole vector space ~. 



Maximal Acceleration 967 

(D) I t  is closed. 
(E) I t  is invariant with respect to the proper  or thochronous Lorentz 

group which acts on the coordinates b k and b rs by means of  its 
four-vector and antisymmetric tensor representations. 

A simplified p roof  of  this theorem is given in Appendix B. 
The simplest description of this cone is given in terms of Dirac matrices.  

We adopt  the metric tensor goo = - 1 ,  gll = g 2 2  = g 3 3  = 1 ,  and we indicate by 
7k (k = 0, 1, 2, 3) the real Dirac matrices in the Majorana representation. 
As is well known, there is a matrix C with the property 

y [  = - C - l y k C  (3.1) 

where the superscript T indicates the transposed matrix. In the representa- 
tion we are using, we can put C = Yo and C is real antisymmetric. Then we 
represent the element (1.1) of  3- by means of  the 4-dimensional r e a l ,  
symmetric matrix 

~---- l ~ r s ~ - - I  bkC-l"yk-~O t~ Yr% (3.2) 

All the real, symmetric 4 x  4 matrices can be written in this form. The 
positive-semidefinite matrices are the coordinates of  the elements of  the 
cone if+. They are characterized by the property 

uTbu >- 0 (3.3) 

which must  hold for every real spinor u. This cone is stable with respect to 
the transformations 

b ~  (a-~)Tba - '  (3.4) 

where a is an arbitrary, real, nonsingular matrix, namely an element of  the 
group GL(4, R).  We obtain in this way all the linear transformations of  5 r 
which map  the cone 8 -+ onto itself. 

It  is clear that on the boundary  of  if+ we have det/~ = 0. A direct 
calculation, using an explicit representation of  the Dirac matrices, shows that 

det/~ = [(b~ 2 - u] 2 -  8wb ~ - 4v (3.5) 

where 

u = b 2 + b '2 + b "2 

v = (b • b ')2+ (b ' x  b")2+ (b"• b) 2 

w = b"" b' • b 

The solutions of  the equation 

( t 2 -  u ) 2 - 8 w t - 4 v = O  

(3.6) 

(3.7) 
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are the eigenvalues of  a real, symmetric matrix and therefore are real. We 
indicate them by tl -< t2-< t3 ~ t4. The cone if§ is defined by the inequality 

b ~ t4 (3.8) 

In the absence of  acceleration and rotation, we have b' = b" = 0, v = w = 
0 and f rom equations (3.7), (3.8) we get the inequality 

b~ 4-ff = IIb[I (3.9) 

which is the usual relativistic upper  bound  to the velocity. If, as in the 
preceding section, we consider the moving rest f rame of  an extended particle, 
we have v = b -  0 and w = 0. Then equation (3.7) has the solution 

t4 = (u + 2v/-~) ~/2 = (b'2+ b"2+ 2Jib' x b"ll) '/= (3.10) 

and equat ion (3.8) coincides with equation (2.5) derived from the naive 
model.  

4. CAUSAL I N F L U E N C E  AND S P A C E T I M E  C O I N C I D E N C E  

We have seen that the cone 5 r§ is invariant under the group GL(4, R). 
It  is natural  to examine the possibility that  all the fundamental  laws of  
physics are symmetric with respect to this group or at least with respect to 
one of  its subgroups Sp(4, R) or SL(4, R). This higher symmetry cannot  
be observed directly because the vacuum, described by the structure con- 
stants of  the Poincar6 group, is not invariant with respect to the whole 
symmetry group, but only with respect to a subgroup which coincides with 
the or thochronous Lorentz group. 

The space ~- contains several sets stable under  the action of GL(4, R) 
besides the cone ~-§ They can be decomposed  into orbits on which the 
group operates transitively. According to a classical result of  the theory of  
the real quadratic forms, these orbits are characterized by the rank and the 
signature of  the matrices /~ which label the points of  5r. We indicate by 
~-(m, n) the orbit defined by the matrices of  rank m + n with m positive 
and n negative eigenvalues. Since m + n < 4 ,  there are 15 different orbits. 
The closure of  an orbit is given by 

~'(m, n) = U ~r(p, q) (4.1) 
p ~ m  
q ~ n  

The cone ~ coincides with ~(4 ,  0). All these orbits can be described by 
means of  inequalities similar to (3.8). For instance, the orbit J-(1, 1) is given 
by 

t I < t 2 = b ~ = t 3 < t 4 (4.2) 
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The physical meaning of  the orbits defined above can be clarified by 
studying some SL(4, R) covariant quantum free fields on a flat space 5e, 
namely on the affine space on which 5 r acts as the translation group (Toller, 
1988). It is assumed that a flat space 6e can approximate a very small region 
of  the curved physical space 5e. It turns out that if ~b(s) is a scalar field, 
we have (in the sense of  distribution theory) 

[~b(s), ~b(s')] = 0 for s ' - s  e J'(2, 2) (4.3) 

It is natural to assume that operations performed in frames separated by a 
vector belonging to 5r(2, 2) cannot influence each other, namely the two 
frames are causally independent.  When we speak of an operation performed 
in the local frame s, we mean that this frame is used for positioning the 
experimental apparatus and that the apparatus acts in a very small neighbor- 
hood of  the origin of  the local frame s. 

The complicated geometry of  the space 5 r suggests that there are two 
degrees of  causal influence. If  

s ' -  s e if+ = J-(4, 0) (4.4) 

we say that s' is strongly influenced by s and we write s ~ s ' .  When 

s ' - s  e ffw = J-(4, 0 ) u  if(3, 1) (4.5) 

we say that s' is weakly influenced by s and we write s --> s'. 
The two relations defined above have the following properties: 

(A) Both the strong and the weak causal influence are reflexive, namely 
we have s o s  and s-> s. 

(B) The strong causal influence is a transitive relation, namely s o s '  
and s ' ~ s "  imply s ~ s " .  

(C) The strong causal influence is an antisymmetric relation, namely 
s o s '  and s ' ~ s  imply s = s'. 

(D) s ~ s '  and s'-->s" imply s-->s". 
(E) s->s' and s ' ~ s "  imply s-->s". 

It follows from the properties A and D that the strong causal influence 
implies the weak causal influence. The property B follows from the convexity 
of  if+. The weak causal influence is not transitive, because ;3rw is not convex. 
For  instance, it may happen that 

s " -  s ' e  ~r(3, 1), s ' - s  e J-(3, 1), s " - s e S r ( 2 , 2 )  (4.6) 

The properties D and E are consequences of  the formula 

~rw + J-+ = ~rw (4.7) 

which is evident if we remember that when we add a positive-semidefinite 
matrix to a Hermitian matrix, its eigenvalues do not decrease. 
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The proper ty  C follows f rom the fact that if+ does not contain straight 
lines. This is not true for weak causal influence, because we have 

J w  n ( - ~ w )  = if(3, 1) n # (1 ,  3) = # (1 ,  1) (4.8) 

and if s ' - s  belongs to this set, s and s '  can influence each other weakly. 
In this case we write s ,~ s '  and we say that the set (4.8) describes a reciprocal 
(weak) causal influence. Since the weak causal influence is not transitive, 
the reciprocal causal influence is not an equivalence relation. 

In order to show that a structure defined by the properties A - E  is 
rather natural,  we suggest a model,  completely different from the one 
considered above, which has all these properties. We start f rom a spacetime 
dL provided with a reflexive antisymmetric transitive relation of  causal 
influence and we consider a family Sf of  sets of  pairwise causally independent  
points of  d/. I f  s, s '  ~ b ~, we say that s ~ s '  if  every element of  s '  is influenced 
by at least one element of  s and every element of  s influences at least one 
element of  s'. We say also that s ~ s '  if  at least one element of  s '  is influenced 
by at least one element of  s. We leave to the reader the p roof  of  the properties 
A-E.  This model  suggests that the concept of  weak causal influence is 
related in some way to the necessity of  considering extended objects. 

In order to extend these concepts to a curved space re, one should start 
f rom an analysis of  the corresponding quantum fields, which has been done 
only in very particular cases. Here we propose  a definition of  strong and 
weak causal influence which preserves at least some of  the properties A - E  
that these relations have in a fiat space Sf. The main purpose of  the following 
sections is to show that these definitions do not contradict the direct physical 
evidence. 

The basic concept  we shall use is the exponential  mapping,  which, 
under  some conditions, defines a diffeomorphism of 6e starting f rom a vector 
field on 5 p. For instance, given an element B = b~A~ ~ ~r and a point s ~ re, 
one can define the point  s '=exp(B)s  ~ 6P by means of  the differential 
equation 

ds(A) 
=b~A,,(s()t)), s(0) = s, s(1) = s '  (4.9) 

dA 

In the following we assume that this equation has solutions defined for all 
the values of  the variable A. 

The strong causal influence s o s '  cannot be characterized by the 
relation s '  ~ exp(ff+)s,  which in general does not define a transitive relation. 
The correct statement is that s o s '  if  and only if there is a curve )t-* s(A) 
with the properties 

ds(;t) 
- - ~  ~ r+, s(0) = s, s(1) = s '  (4.10) 

dA 
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This relation is clearly transitive and reflexive. It is also antisymmetric if 
we assume that all the closed curves with the property (4.10) are reduced 
to a single point. 

The simplest assumption concerning weak causal influence is that s - s' 
if and only if 

s '~ exp(3-w)S (4.11) 

Unfortunately,  as we shall see in Section 6, the properties D and E are not 
satisfied in the physically most relevant case. We shall adopt  this assumption 
in the absence of  a more satisfactory one. If  

s ' e  exp[ J-(1, 1)]s (4.12) 

we have reciprocal causal influence between s and s'. However, since the 
exponential mapping may be noninjective, one cannot prove in general that 
this condition is necessary. 

If  f f  is the Lie algebra of  a Lie group ~,  exp(B) can be considered as 
an element of  ~ which acts on 5 e. The definition (4.10) of strong causal 
influence means that s' ~ ~+s, where ~+ c ~ is the closed semigroup gener- 
ated by the set exp(ff+) (which in general is not a semigroup). The transitivity 
follows from the fact that ~+ is a semigroup. The weak causal influence is 
described by the set exp ($ -w)c  ~, which is not a semigroup. 

In special relativity, without any limitation to acceleration and angular 
velocity, there is only one kind of  causal influence defined by the relation 

x ' ~  x ~ ilx'-xll (4.13) 

between the coordinates in Minkowski spacetime. This relation is transitive 
and it is antisymmetric in spacetime. However, it is not antisymmetric in 
the bundle 5 e of  the reference frames. Frames which differ by a homogeneous 
Lorentz transformation have a reciprocal causal influence and their origins 
coincide in spacetime. In the usual relativistic theories the reciprocal causal 
influence is an equivalence relation and it is the same as the spacetime 
coincidence. This is true also in general relativity, which, as stressed by 
Einstein himself, is based on the possibility of  defining the spacetime 
coincidence of  two events. 

In the theories we are considering, spacetime coincidence is not a 
concept invariant under  GL(4, R)  (as time coincidence or contemporaneity 
is not a Lorentz-invariant concept). It has to be replaced by the concept of 
reciprocal causal influence, which, however, is not an equivalence relation. 
In this sense, these theories are not local. We shall see that this nonlocality 
is far from being observable with available experimental methods. 
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5. DETAILED D E S C R I P T I O N  OF S O M E  ORBITS IN ~" 

In order to find explicit solutions of  (3.7), it is convenient to perform 
a homogeneous Lorentz transformation in such a way that the antisymmetric 
tensor b "s takes a simple form, as discussed, for instance, in the book by 
Landau and Lifshitz (1971) in the case of  the electromagnetic field tensor. 
In the following, we consider only orthochronous Lorentz transformations. 
One has to distinguish a generic case and a degenerate case. In the degenerate 
case, both the Lorentz-invariant quantities 

I ...... = b'" b", ~,r,~. _ b,2_ b,,2 (5.1) " ~ r s u v  0 O 2 U Urs  - 

vanish and by means of  a suitable rotation we get 

b' = (a, O, 0), b" = (0, a, 0), a -> 0 (5.2) 

I f  we put  

b ~ = t, b = (p cos ~b, p sin ~b, y), p - 0 (5.3) 

equation (3.7) after some calculations takes the form 

(t 2 -  3, 2 -  D2) 2 -  4 a 2 ( t -  7) 2 = 0 (5.4) 

This equation can be solved immediately and we get 

tl = - ~  - [ ( ~  + 3,)2 + p211/2 

t2 = ~ - [ ( ~  - 3 , )2+ 2],/2 
(5 .5)  

t 3 = - - a  -1- [ ( a  -I- 3,)2 + p2]1/2  

/4 = O~ -~- [(0~ -- 3 , )2+/3211/2 

In the generic case at least one of  the expressions (5.1) is nonvanishing 
and after a Lorentz transformation one can put 

b '=  (0, O, ce), b"= (0, O, fl), a2+f12>O (5.6) 

Using again equation (5.3), we can write equation (3.7) in the simple form 

(t 2 _ a2 _ f12 _ 32 _ p2)2 _ 4p2(ce 2 +/32) = 0 (5.7) 

and its solutions are given by 

tl = _ { [ p  + (Or2+ f l2)I /212 + 3`2}1/2 

12 = __{[p __ (0/2 + ~2)1/212 + 3`2}1/2 
(5 .8)  

t3 = {[fl  _ (Of2.jl_ ~2)1/2-12.Jr 3`2}1/2 

t4 = {[p + ( a2+  fl2)1/212+ 3,2}1/2 
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The Lorentz transformation which permits us to write the vectors b' 
and b" in the simplified form (5.6) can be decomposed into a rotation, which 
gives 

b '=  (0,/3 sinh ~, a cosh ~) 
(5.9) 

b" = (0, - a  sinh if,/3 cosh ~), ~ -> 0 

b ~  t cosh ~ + p cos ~b sinh 
(5.10) 

b = (p cos ~b cosh ~+ t sinh ~, p sin ~b, 7) 

followed by a Lorentz boost  along the coordinate b 1, which leads to 
equations (5.6) and (5.3). From equations (5.9) and (5.10) we see that it is 
always possible to express a,/3, and ~ in terms of the rotational invariants 
and we get 

0t2--/32 = h ' 2 -  b"2, or/3 = b ' "  b" 
(5.11) a2 +/3 2 = [(b,2_ b,,2)2 + 4(b'-  b") 2] 1/2 

b '2+b "2= (a2+/3 2) cosh(2~) (5.12) 

Note that 

[b '2 - b  "21 -< or2 +/3 2~ b'2+b "2 (5.13) 

The set i f ( l ,  0) = - i f ( 0 ,  1) is defined by the condition t = t2 = t3 = t4. 
Since these equalities are not compatible with equations (5.8), we have to 
consider only the degenerate case and from equations (5.5) we obtain 

t = 7 = a, p = 0 (5.14) 

I f  we substitute these equalities into equations (5.2) and (5.3) and we 
perform an arbitrary rotation, we see that the set i f ( l ,  0) is defined by the 
following equations: 

b ~ = Ilbll = IIb'll = tlb"ll, b ' .  b" = 0, b~ = b ' •  b" (5.15) 

These conditions mean that if not all the components b ~ vanish, we have 
b~  0, and b/b ~ b'/b ~ b"/b ~ form a left-handed triad of  orthogonal unit 
vectors in three-dimensional Euclidean space. 

The set ~(1 ,  1) is defined by the condition t = t2 = t3 and in the degener- 
ate case from equations (5.5) we have 

0 = [ ( ~  + 7)  2 + p2],/2 + [ ( ~  _ 7)2 + p 2 ] , / 2_  2~  

-> I~ + 71 + In - 7 i -  2a  --> 0 (5 .16)  

It follows that 

p = 0, t = 7, ]Y[ -< a (5.17) 
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In the generic case from equations (5.8) we obtain 

t = 0 ,  ~,=0, p = ( a 2 + ~ 2 )  1/2 (5.18) 

This equation shows that if we fix the vectors b' and b", the points of 3(1,  1) 
form an ellipse in a spacelike plane contained in the space of the variables 
b k. In the degenerate case the ellipse becomes a lightlike segment described 
by equations (5.17). We see in this way that 3(1,  1) is a 7-dimensional 
surface. 

If  we substitute equations (5.18) into equations (5.10) and use equation 
(5.12), we can derive the following formulas: 

b ~ = [�89 b "1- ~2-/32)]1/2 cos ~b (5.19) 

[Ibll = [(b~ o~ 2 + 132] 1/2 (5.20) 

From these formulas and equation (5.13) we get the following rotation- 
invariant inequalities, which are satisfied also in the degenerate case and 
hold on the whole set 3(1 ,  1): 

Ib~ min(llb'll, IIb"ll), Ilbll-< (b'=+b"=) 1/= (5.21) 
The set ;Y-+ = 3(4,  0) = - 3(0,  4) is defined by the condition t - t4. In 

the generic case from equations (5.8) we have 

(p2+y2+ot2+f12)1/2<--14<--(p2+y2)l/2+(Ot2+~2)1/2 (5.22) 

A first consequence is given by the Lorentz-invariant inequality [see also 
equation (B.4) of Appendix B]: 

b~ [(b'2-b"2)2+4(b' .  b")211/2}1/2- > Ilbll (5.23) 

which can be extended by continuity to the degenerate case and holds for 
all the points of if+. We see that the cone 3 "+ imposes a limitation on the 
velocity which may be stronger than the usual one if the frame is accelerated 
or rotated. 

The set 3(3,  1 ) = - 3 ( 1 , 3 )  is defined by the condition t a < - t  < - t4. In 
the generic case from equations (5.8) we get 

](p2+ y2)1/2_ ( a 2 + f 1 2 ) l / 2 1  <_ t3 <- t <- t4 <- (p2+ y2)1/2+ (a2+f12)l/2 (5.24) 

In particular, t -> 0 and after an arbitrary Lorentz transformation we get the 
inequality 

b~  > -Ilbll (5.25) 

which holds on the whole set J-w. 
If  x is a 4-vector with x ~  Ilxll and y = Ax, where A is a Lorentz 

transformation with rapidity r  one can show that 

yO_ Ilyll < 
exp(-~') -< ~ ~ -  exp ~, cosh ~" = Ao ~ (5.26) 
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From this general inequality and from equations (5.12) and (5.24), we get 

ibO_ ilblll <__ i t _  (p2+ 2), /2[ exp if-< (a z +/32) 1/2 exp 

= [1(b'2 + b"2 + a2 +/32)]1/2 + [1(b'2 + b"2-  c~2-/32)]1/2 (5.27) 

This inequality can be extended by continuity to the degenerate case and 
it holds on the whole set ~(3 ,  1). By means of  a further majorization we 
get the weaker, but simpler inequality 

Ib ~  Ilblll-< [2(b'= + b"2)] 1/2 (5.28) 

As a consequence, on the set ffw we have 

b ~ >- Ilbll - [2(b '~ + b"=)] 1/2 (5.29) 

and 

b ~ ~ Ilbll + [2(b '2 + b"Z)] 1/= (5.30) 

is a sufficient condition for belonging to 5 "+. 
These inequalities show that, if we can disregard lengths and time 

intervals of  the order o f / ( b ' 2+  b"2) 1/2, both the strong and the weak causal 
influence can be described by the usual inequality b ~  > llbll. Equation (5.21) 
shows that, under  the same conditions, the reciprocal causal influence can- 
not be distinguished from the spacetime coincidence. In the next section 
we shall see how these conclusions are modified by the curvature of the 
space 6e. 

6. CAUSAL INFLUENCE IN THE POINCARI~ G R O U P  

In this section we study some relevant properties of  the sets ~+ and 
exp(3-w) when 4 ~ is the proper  orthochronous Poincar6 group. According 
to our assumptions, these sets describe strong and weak causal influence 
in the physically relevant case in which 5e is the bundle of frames of  the 
Minkowski spacetime. For our purposes, it is convenient to indicate by 
T(x )  = T ( x  k) = exp(xkAk) an element of  the subgroup of translations. Then 
every element of ~ can be written in the form g = AT(x) ,  where A is an 
element of  the homogeneous Lorentz subgroup and x k are the coordinates 
of  the origin of  the frame s ' = g s  measured in the frame s. If  we indicate 
by A both the 4 x 4 matrix which acts on the 4-vectors and the linear operator 
of  the adjoint representation which acts on the Lie algebra LT, we can write 

A exp(B)A -1 = exp(AB) (6.1) 

and in particular 

AT(x)A -1= T(Ax) (6.2) 
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From the Lorentz symmetry of  the sets ~ and Jrw, we get the following 
relations: 

A~+A -~ = ~+, A exp(Ww)A -~ = exp(~-w) (6.3) 

The same symmetry permits us to write the definition (4.10) of strong causal 
influence in a more convenient way. In the special case we are considering, 
it gives rise to the following definition: g ~ ~+ if and only if there is a curve 
A --> g(A) s ~ which, disregarding terms of  the second order in e, has the 
properties 

g(A + e) = exp[eB(A)]g(A) 
(6.4) 

B ( A )  E ~ + ,  g (0)  = 1, g (1)  = g 

I f  we write g(A)=A(A)T(x(A))  and we take into account the Lorentz 
invariance of  ~+,  we can write equation (6.4) in the form 

A(;~+e)T(x(X+e))=A(;t)exp[eB'(X)]T(x(,~)) (6.5) 
where 

B'(A) = A-I (A)B(A)=  bk(A)Ak+lb'S(A)A,s ~ if+ (6.6) 

It follows that, always disregarding higher order terms in e, 

A(A+e)=A(A)exp[�89 A(0) = 1, A(1) = A  (6.7) 

xk(A+e)=ebk(A)+xk(A) ,  xk(0) =0 ,  xk(1)=X k (6.8) 

Equations (6.6)-(6.8) are equivalent to the definition (6.4) of  !9 +, but they 
have the advantage that the translations and the Lorentz transformations 
appear  in different equations. 

It follows from equations (6.6) and (5.23) that b~ > IIb(A)ll, and 
from equations (6.8) we obtain 

fo S: 0-< Ilxll--- IIb(X)ll dx-< b~ ~ (6.9) 

We see that A T ( x ) ~  ~+ implies x ~  > Ilxll. It follows also that a special kind 
of  element of  ~+ is given by 

g = exp(�89 T(bk), bgAk +�89 ~ if+ (6.10) 

In particular, from (5.22) we see that ~+ contains all the elements of  the form 

g = exp(aAz2+flA3o)T(x), x~ +( =+/~)1/= (6.11) 

and from rotational invariance we see that it contains elements of  the kind 

g = RT(x) ,  x ~ _ Ilxll + ~ (6.12) 

where R is a rotation of  an angle 0-< ~b -< ~r and 

g = t Z ( x ) ,  x ~ >- Ilxll + ,7 (6.13) 

where L is a pure Lorentz transformation (boost) with rapidity 77 - 0. 
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Since every proper  orthochronous Lorentz transformation can be writ- 
ten in the form 

A = RILR2  = RI(LR2RI)R-~ 1 (6.14) 

by using also the rotation invariance, we have the following sufficient 
condition for AT(x)  ~ ~+: 

x ~  Ilxll+ n (A)+  ~r (6.15) 

where ~(A) is the rapidity of  the Lorentz transformation A. From equation 
(6.3) we see that the same condition ensures also that T(x)A ~ ~+. 

In order  to treat the set exp(~-w), we have to consider the exponential 
mapping in the Poincar~ group. If B e  9- is given by equation (1.1), one 
can always write 

exp(AB) - 1 r s  - exp(~Ab Ar~) T(xk(A)) (6.16) 

Disregarding terms of  the order e 2, we have 

exp[�89 + e)br~Ar~]T(xk(A + e))  

= exp((A + e ) B )  

= exp(1AbrSA~) T(xk(A )) exp(~eb~Ar~) T (eb  k) (6.17) 

and therefore 

T(xk(A + e) - eb k) = exp(- �89 T(xk(A )) exp(�89 

= T(xk(A) + eb'kx,(A )) (6.18) 

This formula is equivalent to the differential equation 

d x k ( A ) = b k + b i k x i ( A ) ,  xk(0) =0 ,  xk(1)=X k 
dA (6.19) 

In order to solve this equation, it is convenient to simplify the tensor 
b r" by means of  a Lorentz transformation, as in the preceding section. It is 
sufficient to consider the generic case, because our results can be extended 
to the degenerate case by continuity. From (5.3) and (5.6) we have 

d x  ~ 
dA - t + flx3 

dx 1 
dA - p cos ~b - ax  2 

dx z 
dA - P  sin r  1 

dx 3 
- y + f l x  ~ 

dA 

(6.20) 
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and the solution is 

Toiler 

where 

Moreover, 

X = [ p - ( a 2 + / 3 2 ) 1 / 2 1 2 ( 2 s i n 2 ) Z - ( t 2 - y z ) ( ~ s i n h ~ )  2 (6.25) 

In the set ;3-w, we have t - t3 and from equation (5.8) 

t 2 _ 72 _____ [p  _ (a2_F/32)1/212, t ->[7] (6.26) 

a sm ~)  -< 1, sinh - 1 (6.27) 

and it follows that X-< 0. In conclusion, from equations (6.21) and (6.24), 
if b rs is given by equation (5.6), on the set exp(ffw) we have 

X 0 ~ 0 ,  xO--[[xl[-------(0~2 + / 3 2 )  1/2 2sin21 (6.28) 

After a Lorentz transformation we obtain the inequality 

x ~ -Ilxll (6.29) 

X ~  7 / 3 - 1 ( c o s h / 3  -- 1)+ t/3 -1 s i n h / 3  

x 1 = 2 p a  -1 sin(la) cos(r + l a )  
(6.21) 

x 2 = 2 p a  -1 sin(to0 sin(r +�89 

x 3 = t/3-1(cosh/3 - 1) + 7/3 -1 sinh/3 

It follows that 

Hx,, = [(xO)2_ (t2_ 72)(B sin h/3~2 2 / 2  . 1/2 ~)  +p  k : s , n 2 )  2] (6.22) 

Now we use the general inequality 

[A2+(B-C)2]l/2-(A2+B2)l/2+C>-O, C>-O (6.23) 

which follows from the remark that the derivative of the left-hand side with 
respect to C is nonnegative. We obtain 

2 2 1 2  ]2  Otl 
[Ixll<-[(x~ +/3 ) /  T s i n : l  (6.24) 

o/ z I 
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which holds on the whole set exp(3-w). I f  we use equation (5.26), f rom 
equations (6.28) we get 

x~ e x p ~  (6.30) 

In this case the homogeneous  Lorentz t ransformation 

A = exp(�89 exp(-~Alo)  exp(aA12+/3A3o) exp(r (6.31) 

has a rapidity ~ / (A)>0 given by 

cosh ~(A) = A ~ = (cosh r cosh/3 - (sinh r cos a - cosh/3 (6.32) 

We use this formula to substitute exp r in equation (6.30) and we obtain a 
long expression, which is minimal for/3 = 0, cos a = -1 .  In this way we get 
the following inequality valid for A T(x)e  exp(~-w): 

x ~  Ilxll > - - 2  exp[�89 (6.33) 

Note  that in this formula  the equality sign holds, for instance, i f  we take 
an element of  ~-w given by (5.9), (5.10) with 

a =- 7r, /3 = 0, p = ,r, y = 0, 6 = l ' r ,  t = 0 (6.34) 

In fact, in this case we have 

A = exp(cr cosh ~A12 - ,r sinh ~A2o) 
(6.35) 

~7(A) =2~, x = ( - 2  sinh if, - 2  cosh ~, 0, 0) 

Two frames have a reciprocal causal influence if they are connected 
by a t ransformation belonging to exp(3-w)c~ exp( -3 -w) .  In this case we 
must have 

~7 
lx~ § Ilxll-< 2 exp  (6.36) 

Finally, we consider the set ~+  exp(S'w),  which would coincide with 
exp(f fw)  if the property E of  Section 4 were valid. It is sufficient to 
characterize the set a/ /which contains the four-vectors x with the property 

T(x) e ~+ exp(f fw)  (6.37) 

From equations (6.15) we see that 

T(y)A-1AT(x) = T(x + y) e ~ (6.38) 

where A and x are given by equation (6.35) and y = (w(A) + ,r, 0, 0, 0). I f  
we take ~7 sufficiently large, we see that 9/ contains spacelike vectors. We 
remark that  ~ Lorentz invariant and has the property x + y e q/ if x e o// 
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and yO_> [[y[[. It follows that it contains all the vectors with the property 
x~  However, we have r(x)sexp(Ww) only if x~ and the 
property E of  Section 4 is not satisfied. In a similar way one can show that 
the property D is not satisfied. 

7. CONCLUSIONS 

In the preceding sections we have examined the consequences of  a 
limitation on acceleration and angular velocity described by a cone ~ r+ in 
the Lie algebra ~r of  the Poincar~ group or, for more general situations, in 
the tangent spaces of  the 10-dimensional manifold b ~ of  the local reference 
frames. According to Brandt (1983, 1987), these limitations are expected 
effects of  quantum gravity. In the absence of  a consistent quantum theory 
of  the gravitational field, the form of  the cone J-+ has been determined 
starting from rather reasonable general assumptions. 

The equation (3.7) satisfied by the boundary of  ~T t defines a larger 
surface which divides the space ~ into five regions, which we have inter- 
preted in terms of  the relations of  causal independence and of  strong, weak, 
and reciprocal causal influence. These relations are defined in a small region 
of  ~, where it can be confused with the tangent space, but we have suggested 
a natural extension of  these relations to distant points of  b ~. In Section 6 
we have studied in some detail the case in which Ae is the bundle of  frames 
of  the Minkowski spacetime, diffeomorphic to the Poincar~ group. 

These calculations suggest that the spacetime coincidence of  two frames 
moving with relative velocity tgh ~1 has an indeterminacy Ax = I exp(�89 
where l is of  the order of  the Planck length, namely l ~  10 -35 m. The 
inequalities (6.9), (6.15), (6.33), and (6.36) show that, if we can disregard 
lengths and time intervals of  the order of  this quantity, the relations of  
causal influence we are considering cannot be distinguished from the usual 
causal relations of  special relativity. Also, the reciprocal causal influence 
cannot be distinguished from the usual spacetime coincidence. 

We remark that the largest velocity appearing in experiments concerns 
electrons in high-energy accelerators and we have exp 7/~ 2P/M < 106. As 
a consequence, we might have nonlocal effects at distances of  at most 
I. 103~ 10 -32 m. The smallest distance one can explore is the wavelength 
corresponding to a momentum transfer in scattering experiments and is 
larger than 10 -18 m. It follows that the deviations from the usual locality 
and causality assumptions cannot be observed directly. This conclusion 
holds for all the theories based on the Planck length. 

The deviation mentioned above could have indirect consequences on 
the structure of  elementary particles and, as suggested by Gasperini (1987), 
on the very early cosmology. In this respect, it could be interesting to analyze 
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the causal relations in the bundle of frames of  a spacetime endowed with 
a Robertson-Walker  metric. 

A P P E N D I X  A: M I N I M A L  RADIUS OF AN OBJECT 

In this Appendix we show that quantum gravitational effects give rise 
to a lower limit to the observable radius of  a material body. Since we do 
not have a consistent quantum theory of  gravitation, we have to use the 
concepts of  quantum theory and of  general relativity in a complementary 
way, analogous to the complementary treatment of the wave and particle 
models suggested by Bohr when the mathematical formalism of quantum 
theory was not yet available. We shall disregard systematically numerical 
factors of  the order of  unity. 

We consider an experiment which establishes that an object (not 
necessarily a single particle) is contained in a sphere of  radius R during a 
time interval T. According to quantum theory, during the measurement the 
energy of  the object can change by an undetermined amount of the order 
of  h T  -1. As a consequence, there is a large probability that the mass M of 
the object satisfies the inequality 

M c  2> - h T  -1 (A.1) 

From quantum theory it also follows that the object has an undetermined 
momentum and an undetermined velocity of  the order of  h R - 1 M  -1. As a 
consequence, during the time T its center of  mass has an undetermined 
displacement (spreading of  the wave packet) and if we require that it stays 
in a sphere of  radius R, we obtain the inequality 

R >- h R - 1 M  - 1 T  (A.2) 

From general relativity, we know that a body with mass M cannot be 
smaller than the Schwarzschild radius. It follows that 

R >- c - 2 G M  (A.3) 

We can eliminate M from (A.1)-(A.3) and we get 

R T  >- h G c  -4 = 12c -1 (A.4) 

R 3 > h c - 2 G T  = 12cT (A.5) 

In particular, from the last two equations we obtain 

R >- Iv (A.6) 
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APPENDIX B: CHARACTERIZATION OF THE CONE i f+  

In this Appendix we simplify the characterization of  the cone if+ by 
proving the following result. 

Propos i t ion .  If  a cone if+ c f f  satisfies the conditions A-E of  Section 
3, it is given, after a possible change of  sign of  the coordinates b k, by the 
closure of  the set composed of  the sums of  pairs of  elements with the 
properties 

Ilbll=b ~ IIb'll = IIb"ll =pb  ~ b ' . b " = 0 ,  p 2 b ~  (B.1) 

0 ~ p  ~ 1-1 (B.2) 

where l is a given positive constant. 

I f  p > 0, the last two conditions of (B.1) mean that b, b', and b" form 
a left-handed triad of  orthogonal vectors. We can put ! = 1 by means of  a 
rescaling of  the coordinates bk, which can be interpreted as a suitable choice 
of  the units of  length and time (we have already chosen c = 1). Actually, 
all the elements of  if+ are the sum of  two elements with the properties 
(B.1), (B.2), but this stronger result is not necessary for the characterization 
o f  if+. When the uniqueness of  if+ has been proven, all its properties are 
more easily derived from its representation in terms of 4 x 4 matrices. 

First of  all, we remark that if a convex rotation-invariant set in 
contains an element with coordinates (b ~ b, b', b"), it contains also the 
element with coordinates (b ~ 0, 0, 0) which belongs to the convex hull of  
a finite set of  points obtained from the given point by means of  suitable 
rotations. From the condition C, we see that J-+ has points with b ~ ~ 0 and 
after a possible change of  sign of  the coordinates b k we can assume that it 
has points with b ~ > 0. From the conditions A, B, and D it follows that if+ 
contains all the points with the properties 

b~ b = b ' = b " = 0  (B.3) 

but no point with b ~ < 0. Then, from the assumption of  Lorentz invariance, 
we have the following result. 

L e m m a .  All the points of  ~-+ satisfy the condition 

b ~  Ilbll (B.4) 

We remark that the conditions (B.1) are equivalent to the conditions 

bkbk = O, b ~ >- O, b rSbrs = 0 
(B.5) 

e . . . .  brSbUV = O, p2b ibk  = b'~brk 
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and therefore are Lorentz invariant. Since also the cone 3 + is Lorentz 
invariant, it is sufficient to prove our proposi t ion for a special class of  
points, which generate all the other points by means of suitable Lorentz 
transformations.  

It follows f rom the condition C that 3-+ is the closure of  its interior 
and therefore it is sufficient to analyze its interior points. In this case, (B.4) 
cannot  be an equality and by means of  a Lorentz t ransformation we can 
always obtain 

b ~  b = 0 ,  b 12= b 3 ~  (B.6) 

We indicate by b~(~) the coordinates obtained from b e by means of 
a Lorentz boost  with rapidity ff along the axis b 3 and we define the quantities 

b ~ =  lim exp(-IgO[)b"(ff) (B:7) 

Since 5 r+ is Lorentz and dilatation invariant and it is also closed, it contains 
the points with coordinates b ?. One can easily see that the only nonvanishing 
limits are 

b ~ =�89 ~ 

b 1~ = �89 1~ + b 13), 

b 23 = �89 23 + b2~ 

and it follows that 

b3=+�89 ~ 

20 1 20 23 b• =~(b •  ) 

b 31 = 1(b315= b ~ 

(B.8) 

b ~ = b~+  b"_ (B.9) 

Note  that  the coordinates b'Y satisfy the conditions (B.1). All the points 
which satisfy these conditions with a given value of  p are connected by a 
rotation and a dilatation. It follows that we have only to determine the 
allowed values of  p. I f  we perform the operations described above starting 
f rom a point  with the properties (B.3), we see that p = 0 is an allowed value. 
From the convexity and closure assumptions it follows that p has to satisfy 
a condition of  the kind (B.2). The case l = 0 is excluded by the condition 
B and l = co is excluded by the condition C. 
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